Photocatalytic reduction of N₂O on metal-supported TiO₂ powder at room temperature in the presence of H₂O and CH₃OH vapor

Akihiko Kudo* and Hidemasa Nagayoshi

Department of Applied Chemistry, Faculty of Science, Science University of Tokyo, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

Received 13 January 1998; accepted 2 March 1998

Ag- and Cu-supported TiO_2 photocatalysts showed high activity for the reduction of N_2O to N_2 at room temperature in the presence of CH_3OH and H_2O vapor. The suppression by H_2O on the activity was not observed in the present photocatalyst system. The remarkable behavior of the Ag and Cu co-catalysts for TiO_2 photocatalysts agreed well with that of electro- and thermal catalyses.

Keywords: photocatalysis, N2O, nitrous oxide, Ag/TiO2, Cu/TiO2

1. Introduction

N2O is well known as a greenhouse effect gas as well as CO₂ and CH₄. The development of the emission control process has urgently been desired. On the other hand, N₂O is kinetically stable among nitrogen oxides and, therefore, the activation under mild conditions is an interesting project. N₂O can decompose on some photocatalysts [1–5]. ZnO powder [1,2], and metal oxides [3] and metal ions [5] fixed on suitable supports have mainly been used as photocatalysts. However, semiconductor photocatalysts loaded with co-catalysts have hardly been employed for the N₂O reduction [4]. A drastic effect of co-catalysts is expected for the photocatalytic reduction of N₂O. On the other hand, electrocatalyses for the N₂O reduction have been studied [6-8]. The current efficiency strongly depends on the electrode material showing the remarkable electrocatalyses. Here, the supported photocatalysts are regarded as micro cells. Therefore, the relationship between the electro- and photocatalyses is of interest. This paper reports the efficient reduction of N₂O on some semiconductor photocatalysts loaded with co-catalysts. The mechanism of the photocatalytic activity is discussed by the comparison with electrocatalyses and thermal catalyses.

2. Experimental

The following oxide semiconductor powders were employed: TiO_2 (Kanto, Anatase, purity: 99%), TiO_2 (Kanto, Rutile, purity: 99%), $SrTiO_3$ (Soekawa, purity: 99.9%), WO_3 (Nacalai tesk, purity: 99.5%), Fe_2O_3 (Kanto, purity: 95%), ZnO (Kanto, purity: 99%), In_2O_3 (Kanto, purity: 99.9%), PbO (Kanto, purity: 99%), and $K_4Nb_6O_{17}$ (prepared from K_2CO_3 and Nb_2O_5). Supported catalysts were prepared by an impregnation method using aqueous

* To whom correspondence should be addressed.

metal nitrate and chloride solutions. The amounts of metal supported were 0.8–1 wt%. Some photocatalysts were reduced under H₂ flow (1 atm) as pretreatment. However, the pretreated catalysts were contacted with air before use in order to transport it into a reaction cell. The photocatalytic reaction was carried out in a gas-closed circulation system (the dead volume: 210 ml). Photocatalysts (1 g) were scattered in a quartz cell with a flat bottom. 100, 115, and 20 Torr of N₂O, CH₃OH, and H₂O vapor were introduced in the system, respectively, and UV-light was irradiated from upside using a 300 W Xe illuminator (CERMAX, LX300). It is the gas–solid-phase photocatalytic reaction. N₂ evolved was determined using a gas chromatograph (Shimadzu GC-8A, TCD, He carrier).

3. Results and discussion

Table 1 shows the photocatalytic reduction of N₂O on various oxide semiconductor photocatalysts loaded with Ag in the presence of CH₃OH and H₂O vapor. TiO₂, SrTiO₃, and K₄Nb₆O₁₇ showed reasonable activities. In contrast, ZnO [9] and WO₃ [10], which have been reported to possess photocatalytic activities for O2 evolution in the presence of Ag⁺ and Fe³⁺ as electron scavengers, showed low or negligible activities for the N₂O reduction. TiO₂, SrTiO₃, and K₄Nb₆O₁₇ photocatalysts can efficiently produce H₂ from water [11]. Therefore, the potentials of water reduction (i.e., the conduction band levels) of photocatalysts seem to be an important factor for the N2O reduction. This is also supported by the fact that an anatase showed higher activities than a rutile of which the conduction band level is 0.2 eV lower than that of the anatase. The N₂O reduction could easily proceed thermodynamically judging from the considerably positive redox potential, as shown in equa-

$$N_2O + 2H^+ + 2e^- \rightarrow N_2 + H_2O$$
 $E^o = +1.77 \text{ V}$ (1)

 $Table\ 1$ Photocatalytic N₂O reduction in the presence of CH₃OH and H₂O vapor on various metal oxide semiconductor powders loaded with 1 wt% of Ag.

Pretreatment ^a	Activity of N_2 formation $(\mu mol/h)$
no	171
no	126
no	117
no	0
no	87
no	0.8
yes	3.7
no	6.8
yes	20
no	0.3
no	0.1
no	0.3
	no no no no no no yes no yes no no

^a H₂ reduction at 370 K; ^b without H₂O vapor; ^c in aqueous CH₃OH solution. Catalyst: 1 g; N₂O: 100 Torr; H₂O: 20 Torr; CH₃OH: 115 Torr.

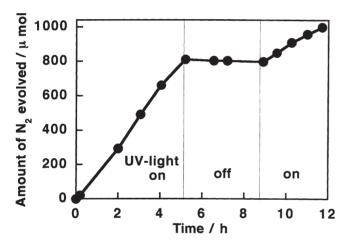


Figure 1. Photocatalytic reduction of N_2O to N_2 on $Ag(1 \text{ wt}\%)/TiO_2$ powder in the presence of CH_3OH and H_2O vapor. Catalyst: 1 g; N_2O : 100 Torr; H_2O : 20 Torr; CH_3OH : 115 Torr.

However, such a high conduction band level should be indispensable for the N_2O reduction since the process of H^+ reduction is involved in the half reaction.

In the thermal catalytic reduction of nitrogen oxides, in general, the strong suppression by H_2O on the activity is observed. It is noteworthy that the photocatalytic reduction of N_2O efficiently proceeds on the Ag/TiO_2 catalyst even in the presence of H_2O vapor as shown in table 1. However, the photocatalytic reaction at the liquid–solid interface did not proceed when the Ag/TiO_2 photocatalyst was dispersed in an aqueous methanol solution. Thus, the gas–solid interface reaction could cause the high photocatalytic activity.

Figure 1 shows the time course of the photocatalytic reduction of N_2O on the Ag/TiO_2 powder. The amount of N_2 evolved increased with irradiation time and the reaction stopped under dark, indicating that the reaction proceeded photocatalytically.

Table 2 shows the N_2O reduction on various cocatalysts-supported TiO_2 photocatalysts. Ag- and Cu-supported TiO_2 photocatalysts showed high activities while

Table 2
Photocatalytic N₂O reduction in the presence of CH₃OH and H₂O vapor on various metals- and metal oxides-supported TiO₂.

Supported co-catalyst ^a	Pretreatment temperature ^b (K)	Activity of N_2 formation $(\mu \text{mol/h})$
V_2O_5	no	0.3
Cr oxide	670	0.4
Mn oxide	670	0.2
Fe	670	0.3
Co	670	0.3
Ni	670	0.5
Cu	370	86
ZnO	no	0.3
Ru	470	8.1
Pd	370	0.4
Ag	370	200
Pt	370	0.2
Au	470	0.3

^a The amounts loaded: Pd: 0.8 wt%, others: 1 wt%; ^b H₂ reduction. Catalyst: 1 g; N₂O: 100 Torr; H₂O: 20 Torr; CH₃OH: 115 Torr.

others showed negligible activities. Pt/TiO_2 , which has often been used for various photocatalytic reactions, hardly showed activity for the N_2O reduction. In this case, H_2 evolution was predominant. Thus, the remarkable effect of the Ag and Cu co-catalysts supported was observed.

 H_2 evolution reactions from aqueous methanol solutions on Pt/TiO_2 photocatalysts are well known to proceed with high quantum efficiencies of several tens percent [11]. The activity for the H_2 evolution from CH_3OH and H_2O vapor on the Pt/TiO_2 photocatalyst was 340 μ mol/h under the present experimental conditions. On the other hand, maximum activity of 200 μ mol/h for the N_2 evolution from N_2O , CH_3OH and H_2O vapor was obtained when Ag/TiO_2 photocatalysts reduced at 370 K in an H_2 stream was employed, as shown in table 2. The comparison of the activity for the N_2 evolution with that for the H_2 evolution indicates that the efficiency of the Ag/TiO_2 photocatalyst for the N_2O reduction by CH_3OH is considerably high.

In the electrochemical reduction of N_2O in aqueous solutions, Ag and Cu electrodes can reduce N_2O to N_2 with high current efficiencies while H_2 evolution is predominant on a Pt electrode [8]. The electrocatalytic behavior agrees well with the photocatalysis mentioned above. It is interesting that N_2O is hardly reduced on the Pt electrode and the Pt co-catalyst supported on TiO_2 photocatalysts even though nascent hydrogen exists on the surface.

In the thermal catalyses, the titration by N_2O is often employed for the determination of the surface areas of Cu and Ag catalysts [12,13]. This method is based on the following reaction:

$$N_2O \rightarrow N_2 + O_{(ad)}$$
 on Ag and Cu surfaces. (2)

In the photocatalytic reaction, electrons produced by photoirradiation can enhance the dissociation of N_2O through

electron capture (reaction (3)). The surface is refreshed by the elimination of adsorbed oxygen species by reaction (4).

$$N_2O + e^- \to N_2 + O_{(ad)}^-$$
 (3)

$$O_{(ad)}^- + H^+ + e^- \to OH^-$$
 (4)

On the other hand, CH_3OH is oxidized by holes on TiO_2 surfaces. The photocatalytic reduction of N_2O efficiently proceeded on the Ag- and Cu-supported TiO_2 powder through such a mechanism in which the dissociation absorption of N_2O on the Ag and Cu surfaces was involved.

Acknowledgement

The authors gratefully acknowledge the financial support from the First Toyota High-tech Research Grant Program and Mitsubishi Petrochemical Co. This work was also supported by a Grant-in-Aid (No. 09640696) from the Ministry of Education, Science, Sports, and Culture, Japan.

References

- J. Cunningham, J.J. Kelly and A.L. Penny, J. Phys. Chem. 75 (1971)
- [2] K. Tanaka and G. Blyholder, J. Phys. Chem. 75 (1971) 1037.
- [3] M. Anpo, N. Aikawa, Y. Kubokawa, M. Che, C. Louis and E. Giamello, J. Phys. Chem. 89 (1985) 5017.
- [4] A. Kudo and T. Sakata, Chem. Lett. (1992) 2381.
- [5] K. Ebitani, M. Morokuma, J.-H. Kim and A. Morikawa, J. Chem. Soc. Faraday Trans. 90 (1994) 377.
- [6] H. Ebert, R. Parsons, G. Ritzoulis and T. Van der Noot, J. Electroanal. Chem. 264 (1989) 181.
- [7] G. Attard and A. Ahmadi, J. Electroanal. Chem. 389 (1995) 175.
- [8] A. Kudo and A. Mine, J. Electroanal. Chem. 408 (1996) 267.
- [9] H. Hada, H. Tanemura and Y. Yonezawa, Bull. Chem. Soc. Jpn. 51 (1978) 3154.
- [10] W. Erbs, J. Desilvestro, E. Borgarello and M. Grätzel, J. Phys. Chem. 88 (1984) 4001.
- [11] T. Sakata, in: *Photocatalysis*, eds. N. Serpone and E. Pelizzetti (Wiley, New York, 1989) p. 311 and references therein.
- [12] J.J.F. Scholten and J.A. Konvalinka, Trans. Faraday Soc. 65 (1969) 2465
- [13] J.J.F. Scholten, J.A. Konvalinka and F.W. Beekman J. Catal. 28 (1973) 209.